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The generation and propagation of pressure waves (ballistic waves) by a body impacting and
penetrating into water at high speed are investigated both analytically and numerically. An
analytical model is, in principle, applicable for predicting ballistic waves by any projectiles of
practical interest. The theory is general enough to handle oblique and/or multiple penetrations,
and is valid for impacts at subsonic and supersonic velocities with respect to water. The ballistic
waves radiated by a projectile are expressed as a convolution between the vertical component,
which represents the response of a moving point source, and the horizontal component, which
represents the response of the cross-section of the source. Diffraction effects resulting from the
finite size are accounted for by including the horizontal pressure component. A time inversion
phenomenon which can occur during supersonic penetration is also considered. The approach
provides valuable insight into the pressure field generated by the penetration mechanisms.
Numerical results are obtained by using a nonlinear wave-code, and these are in good
agreement with the analytical predictions. ( 1997 Academic Press Limited.
1. INTRODUCTION

WHEN SINGLE OR MULTIPLE PROJECTILES penetrate into water at high-speed, a pressure wave is
generated through the kinetic energy transfer and propagates underwater. Research on the
water entry phenomena, published in the open literature, has been motivated primarily by
an interest in the forces during water impact (Korobkin & Pukhnachov 1988; Zhao
& Faltinsen 1993) and the shape of the cavity formed behind the body (Lee et al. 1977). Only
a few experimental studies have investigated the generation and propagation of the ballistic
waves into the fluid (McMillen 1945; McMillen & Harvey 1946; McMillen et al. 1950; Leslie
1964; Hoover & Dawson 1966).

Early experiments of McMillen & Harvey (1946) using a spark shadow-graph of the
shock waves for high-speed entry of spheres into water showed that the sphere is quickly
decelerated by drag, while the impact shock wave propagates from the impact point at the
sound speed of water, thus being detached from the sphere. They also found that mechanical
resonant oscillation of the sphere caused significant radiation of high-frequency waves into
the water. In 1964 Leslie measured the underwater sound produced by firing bullets into
water at the relatively low velocity of 230 m/s. Leslie was interested in the measurements of
ballistic waves radiated by a bullet as well as the collapse waves created by the bubble
oscillations in the late stage of the penetration. It is of interest to note that the shock and
secondary collapse waves are similar to what is seen in underwater explosions. His tests
showed that most of the sound energy from the low speed bullet entry is produced primarily
89—9746/97/070879#26 $25.00/fl970103 ( 1997 Academic Press Limited
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by the oscillatory collapse of the bubbles formed by the bullet wake cavity. However, this is
true only for relatively low entry velocity (Lee 1995).

Theoretical studies for calculating ballistic waves began in the late sixties with the work of
Bristow & Lundeberg (1969) and Yurkovich (1969). Yurkovich used potential theory to
describe the fluid motion, by placing a moving point source along the projectile trajectory in
the fluid. Lundstrom (1971) presented a method based on Yurkovich’s theory for modelling
the pressure field generated by a subsonic tumbling projectile in a fuel tank. Lundstrom was
interested in the ‘‘ram’’ pressure created in the fluid during penetration of a fuel tank, since it
can cause catastrophic failure of the tank structure (Ball 1976). Lundstrom adopted an
energy balance equation which relates the loss of the kinetic energy of a projectile to kinetic
and potential energy stored in the medium. The energy balance equation was originally
developed by Birkhoff & Zarantonello (1957). This theory was substantiated by a large
body of experimental data. Stepka & Morse (1963, 1966) investigated experimentally the
response of liquid-filled tanks impacted by subsonic and supersonic particles. Lundstrom’s
analysis, however, was restricted to subsonic impacts, although in 1988 he proposed an
extension of the method for supersonic impacts with respect to the fluid, without providing
results.

Until now no comprehensive analytical or numerical studies have been reported on the
ballistic radiation of pressure waves by a projectile undergoing high-speed water penetra-
tion, particularly at supersonic velocities. For the far-field solution, a computational
approach that solves nonlinear fluid flow is not reliable, because of the large three-
dimensional fluid medium surrounding the structure. Hence a goal of this paper is to
develop a model for predicting the formation, interaction and propagation of the ballistic
waves generated by single or multiple projéctiles penetrating into water at a normal or
oblique angle. The model is valid for impact at subsonic and supersonic velocities with
respect to water. To investigate the ballistic waves, we restrict our attention to the specific
characterization of the pressure signatures at selected locations in the fluid. Comparisons of
numerical simulations using a finite difference code, which solves the full nonlinear Euler
equations, with the analytical results of the acoustic radiation from a moving source are
provided. Another application of this theory is ballistic impact on fuel cells and micro-
meteorite impact on rocket propellant tanks. For micro-meteorite impact on propellant
tanks the supersonic entry problem is a critical one.

2. THEORY

2.1. PROJECTILE DYNAMICS

Consider a projectile impulsively accelerated at t"0 to an impact velocity of »
l
, penetrat-

ing into a compressible fluid with a straight trajectory in the #z direction. To predict the
ballistic waves, a knowledge of the dynamics of the projectile which is governed by kinetic
energy loss during the penetration is required. The deceleration from the impact velocity
can be described by Newton’s second law,
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(1) is valid for a rigid projectile, which generally limits the impact velocity to less than
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2 km/s. Using the velocity decay constant, b"o
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b
is the penetration distance. Most low velocity impact studies use

a constant drag coefficient. For higher velocities the drag coefficient becomes a strong
function of Mach number, M, especially in the transonic regime. In order to describe the
variation of drag coefficient with Mach number, we must select a projectile geometry. For
the purpose of this study a spherical geometry is chosen. The correlation of the drag
coefficient for spheres measured by Charters & Thomas (1945) shows that there are three
ranges of velocity, roughly ‘‘subsonic’’ up to M"0)5, ‘‘transonic’’ from 0)5 to 1)4, and
‘‘supersonic’’ beyond M"1)4.

By integrating equation (1) numerically with a variable drag coefficient, the velocity decay
and kinetic energy loss of a projectile in the fluid can be evaluated along the penetration
depth. With the results, an analytical formation for ballistic waves radiated by a body will
be provided in the next section. As would be expected, an accurate estimation of the kinetic
energy loss of a projectile is always important in determining the ballistic waves.

2.2. BALLISTIC WAVE MODEL

Figure 1 shows the ballistic source-observer geometry. The diameter of a projectile is D
p
.

The observer is located at a distance r
o
and an angle h

o
from the top of the column at the

air-fluid interface. A semi-infinite domain for the water is used to evaluate the ballistic
waves radiated by the projectile. This allows us to ignore any reflected waves from any
possible boundary surfaces. During the penetration, the kinetic energy loss of the projectile
due to drag generates a disturbance in the medium which is received as a pressure wave. The
objective is to relate the spatial and temporal characteristics of the projectile to the ballistic
Figure 1. Geometry of normal penetration of a sphere.
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waves observed at any location in the medium. The pressure field radiated by a ballistic
source (BS) is assumed to be a convolution of the response of its horizontal component (in
the x—y plane, as shown in Figure 1) and that of its vertical response (in the x—z plane),
which enables us to consider a moving finite volume source. Such a method was developed
by Berthelot & Busch-Vishniac (1987), who studied the generation of underwater sound by
a moving high-power laser source. Berthelot & Busch-Vishniac proposed that the laser
source can be described by the convolution of the response of the vertical component and
horizontal component accounting for the narrow long laser beam with finite laser beam
diameter.

In this study, the vertical component represents the response of a moving point source
(D

p
P0) with a pressure release boundary, such as an air-water interface. On the other

hand, the horizontal component represents the response of the cross-section of the source. If
P
V
(t) and P

H
(t) denote the vertical and horizontal responses of a source of arbitrary velocity,

respectively, then we have,

P (t)"P
V
(t)P

H
(t) (3)

where P(t) is the acoustic pressure generated by the penetration mechanisms. The separabil-
ity of the horizontal component from the vertical component is only an approximation,
which is reasonable provided that the observer is located several diameters away from the
source (Berthelot & Busch-Vishniac 1987). In order to predict the pressure waveform
radiated by a BS, it is now necessary to evaluate P

V
(t) and P

H
(t) individually.

2.2.1. »ertical component

The vertical component is obtained by using the analysis of a moving point source. This is
a reasonable approximation when the projectile size is so small that disturbances coming
from an entire cross-section are received simultaneously by the observer. However, the
theory becomes complicated when we attempt to analyse the pressure waveform radiated
by a supersonic BS since the Doppler factor can take a negative value, which is referred to as
time inversion. This effect occurs when a BS moves toward the observer faster than the
disturbances it generates. The time inversion phenomenon, which is observer-location-
dependent, again disappears at an arbitrary depth since the projectile velocity decreases
continuously.

An inviscid and non-conducting model is assumed for the flow field. The problem is
linearized by the small disturbance approximation. The fluid can then be described in terms
of a potential function, u, which satisfies the wave equation (Yurkovich 1969),
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(4)

where c is the speed of sound in the fluid. The fluid velocity is given by: u"+u. The pressure
generated by a BS is then obtained using Bernoulli’s equation, given by
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where P
o
is ambient pressure and º is the speed at the fluid. At larger distances the dynamic

pressure term in equation (5) is negligible, and the pressure field in the fluid is often
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calculated using only the unsteady potential term. At first glance, using the compressible
wave equation and the incompressible Bernoulli equation may seem inconsistent. Firstly,
the wave equation is valid everywhere expect for a very small region (typically less than one
sphere diamteter) where the disturbances propagate at a finite velocity and are described by
the linearized wave equation. The density changes are also small outside this region, and
hence the incompressible form of the Bernoulli equation is reasonable. The approach of
using the wave equation and the incompressible Bernoulli equation is thus valid and is
consistent with other investigations (Cook 1993).

The problem is further simplified by approximating the effect of a projectile and
subsequent cavity by the action of distributed point sources along a trajectory with suitable
time delay, corresponding to the motion of the projectile. Figure 2 shows the geometry for
ballistic wave generation in the fluid by a moving source. For an arbitrary velocity source
the potential, which is the total radiation summed over a line source distribution along the
z-axis, can now be partitioned into two similar integrals (Lundstrom 1988),

u(z, w, t)"!P
zb(q)

0

f(m, t!r/c)

r
dm#P

za(t)

0

f(m, t!r/c)

r
dm (6)

where r is the distance between the source and observer location, Z
a
(q) is the distance for the

period of time inversion, m is a penetration index, and f is the source strength at m. The
source strength and integration limits should be calculated at the retarded time, t!r/c,
since the potential function satisfies the wave equation. The second integral allows the
prediction of the pressure waveform radiated by a supersonic BS. Although equation (6) is
not restricted to far-field radiation, it is assumed that the projectile diameter is very small
compared to the wavelength of pressure waves. This assumption will be relaxed later in this
paper. Since the free surface is a pressure-release boundary, a line sink is placed above the
fluid and 180° out of phase with the source in the fluid. This line sink is referred to as an
image line source. This image contributes to the ballistic waves received after time r

o
/c.

For the period between the time of impact up to when the projectile reaches Z
a
(q), a time

inversion exists. In this case the source can be divided into the four regions shown in
Figure 3. If we denote t

p
(z) as the time of arrival to the observer of a wavelet emitted when

the source is at a distance z from the impact point, then t
p
(z) can be expressed as follows:

t
p
(z)"t

b
(z)#r/c (7)

In this expression the first term on the right hand side, t
b
(z) represents the projectile time of

arrival at point z, and the second term represents the travelling time of a wavelet to the
Figure 2. Geometry for ballistic wave generation.



Figure 3. Geometry for a supersonic ballistic source illustrating time inversion.
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observer. The contributions to the pressure waves from the four regions are distinguished
by regions in time as follows.

(i) t(t
p
(Z

a
). In this time region, no signal is observed.

(ii) t"t
p
(Z

a
). At this particular time, the first wavelet received by the observer is

originated at Z
a
.

(iii) t
p
(Z

a
)(t(t

p
(Z

c
), or t

p
(0). An instant later, after the arrival of the first wavelet,

wavelets coming from the regions II and III of the source are received simultaneously by the
observer in pairs. It is important to realize that the source in region II is actually a line sink
distribution during the time of time inversion. An interesting parameter is the distance Z

c
.

Waves emitted from this location will arrive at the observer with those emitted from the
impact point simultaneously at time r

o
/c.

(iv) t't
p
(Z

c
), or t

p
(0). The wavelets emitted by regions I and IV are received simulta-

neously by the observer in pairs. However, the wavelets coming from region I are inverted
due to the pressure-release boundary. Consequently, the period of the time inversion, q

i
, is

defined as follows,
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For a subsonic potential, the integral in equation (6) for the fluid potential must only be
evaluated between 0 and Z (r) since Z (q) is equal to zero. The image source exists only
b a
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above the free surface. In this case, the time derivative of the potential becomes (Lundstrom
1971)
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denotes the distance between the source and observer, A
b

is the value of A,
estimated at Z

b
(q), P

c
is the cavity pressure and N"ln(X/a) is a geometric dimensionless

parameter that accounts for the range of influence of the divergence of the flow, as discussed
by Birkhoff & Zarantonello (1957), and a is the cavity radius. A value of N"1/0)43 is used
for the subsonic calculations and N"1/0)3 for the supersonic calculations. In these
relations the rate of the projectile kinetic energy loss, (dE

p
/dZ

b
) Dm , is determined from

a numerical integration of the projectile dynamics using a velocity-dependent drag coeffic-
ient. For high-speed water impact, the cavity pressure can be assumed to be equal to the
vapour pressure of water (Wolfe & Gutierrez 1988), with no variations in the #z-direction
(Abelson 1970). They velocity components in the z- and w-direction were also given by
(Lundstrom 1971):
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Using equations (9), (10) and (11) in equation (5) leads to numerical calculations of the
vertical component received at specified locations as a function of time.

For a supersonic source the integrals of equation (6) are identical to the subsonic one, so
that equations (9), (10) and (11) are also applicable. However, there is a singularity in these
expressions. This is resolved artificially by imposing the limit,

D1!»
p
(z!Z

b
)/cR

b
D'0 (12)

In acoustics, M
c
("»

p
(z!Z

b
)/cR

b
) is a convected Mach number which represents the

velocity component along a line connecting a source and an observer at (z, w). Thus, there is
a distinction (Berthelot & Busch-Vishniac 1987) between a supersonic source and a source
which is seen as supersonic by the observer. In the first case, M is greater than one, whereas
in the second case, which induces time inversion at the observer, M

c
is greater than one. The

interpretation of the first case is that the moving source does not induce a time inversion on
the observer regardless of the source speed if the observer is located in the backward
hemisphere, since (1!M

c
) is always positive. Thus the time gap between two wavelets is

accentuated because the later wavelet has so much farther to travel. As a final note, the
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singularity discussed above does not arise in the numerical simulations in which the full
nonlinear wave equation is solved.

As mentioned previously, the effects of the projectile diameter become significant if the
wavelength of the pressure wave is comparable to the projectile diameter. This is always the
case when the source is moving at transonic velocities. In this case the approximation of
small diffraction effects breaks down. For the purpose of having a model valid for any
source velocity, it is necessary to include the projectile size effects in the model. This is the
topic of the next section.

2.2.2. Horizontal component

The analysis was simplified by decomposing the acoustic pressure into the vertical and
horizontal components. For the horizontal component we assume that the pressure is due
solely to the response of the cross-section of the source. Under this condition, we can
construct the horizontal pressure by taking advantage of the analysis of Morse (1976) for
transient radition from a disk as shown in Figure 4, and are able to take the projectile
size effects into account. If the source distribution is assumed to be constant across the
cross-section of radius m (Berthelot & Busch-Vishniac 1987), the impulse respose of
the disk is,

P
H
(t)"

1

nm2 P
m 4*/h

~m4*/h
2J(m sin h)2!y2 d[t!(r#y)/c)] dy

"

2c

nm2 sin2 h
J(m sin h)2!(r!ct)2 (13)

when (r!m sin h)/c(t((r#m sin h)/c; otherwise the integral is zero. Similarly, using the
same method with a Gaussian source distribution across the cross-section of radius m,
(Berthelot & Busch-Vishniac 1987) the impulse response of the disk is
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c

Jnm sin h
exp C!A

(r!ct)

m sin h)B
2

D (14)

when (r!m sin h)/c(t((r#m sin h)/c; otherwise the integral is zero. Equations (13) and
(14) provide expressions for the horizontal response in analytical form for either a uniform
or a Gaussian intensity distribution across the cross-section of the source. In all calcu-
lations, a Gaussian intensity distribution was assumed. When a BS is moving at transonic
Figure 4. Transient radiation from a disk.



BALLISTIC WAVES IN HIGH-SPEED WATER ENTRY 827
velocities in water, the Doppler-shifted wavelength of the acoustic radiation shrinks to
a very small value compared to the projectile size, in which case very significant diffraction
effects are generated. The effect of the finite diameter of the projectile may be thought of as
introducing many infinitesimally thin line sources of the vertical components. Mathemat-
ically these effects can be included by convoluting the cross-sectional components with the
vertical components. By considering the cross-section impulse response, the diffraction
effect which represents the time gap between the arrival of the waves coming from different
points of the cross-section can be resolved. Thus the pressure pulse is actually stretched out
due to the horizontal cross-section diffraction time. The greater the angle h, the greater the
stretch.

2.3. SOLUTION PROCEDURE FOR THE ANALYTICAL SOUTION

The objective of this section is to outline the procedure employed in constructing the
pressure waveform radiated by a BS (ballistic source) moving at subsonic or supersonic
velocities. The four basic steps are as follows.

(a) First, the motion of a projectile is decomposed in time into constant time interval *t,
and the momentum equation is solved to determine the projectile dynamics.

(b) Second, the existence of the time inversion at a specified observer location is esti-
mated by calculating numerically the arrival time of each wavelet emitted by each part of
a line source.

(c) Third, if there is no time inversion, the pressure P
V
(t) received at the observer is

obtained by adding the elementary pressure wavelet emitted by each part of the line source
with a suitable time delay corresponding to the motion of the source. In this case equation
(5) can be used to determine the elementary pressure wavelet. On the other hand, if there is
time inversion, Z

a
(q) should be estimated. The first wavelet received by an observer always

originates at Z
a
(q). P

V
(t) can be obtained numerically by adding the wavelets emitted from

each part of the source. It is important to realize that the elementary wavelet is a function of
the position of the source since the distance and the angle between the source and the
observer are time-dependent in the case of a moving source.

(d) The final step in the analysis is to construct the continuous pressure waveforms
received at the observer by performing a convolution of the vertical and horizontal
components.

3. NUMERICAL MODELLING

We solve the compressible, time-dependent, inviscid conservation equations for mass
density, momentum, and energy which are in differential form (Anderson 1987)
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where e is the specific total energy, p
ij

stress tensor, and f
i
external body forces per unit

mass. To complete this system of equations, an equation of state (EOS) and constitutive
equation for both projectile and water are required. The EOS for water is assumed to follow
the Mie-Gruneisen approximation, and the parameters used in the numerical simulations
are given by Weingarten et al. (1992). The projectile is assumed to be rigid, and the water is
modelled as a fluid with no strength. Water is sometimes modelled as a linear elastic-plastic
material (Janzon et al. 1993) with low yield strength (10 MPa) and low elastic modulus
(2000 MPa).

An important and difficult phenomenon to capture by a finite difference approximation is
the shock wave, which produces a discontinuity in the velocity, pressure and density. There
are generally two approaches to handle the shocks. The first is using the Rankine-Hugoniot
jump conditions. The second employs a discretization procedure of the differential equa-
tions in conjunction with the ‘‘artificial viscosity’’ concept devised by von Neumann &
Richtmyer (1950) to spread shocks smoothly over several meshes. Although the shock front
is smeared over several meshes, a steep shock front can be resolved by using finer zoning.

In order to save computational time and memory, an absorbing (transmitting) boundary
condition which allows the pressure wave to continue ‘‘through’’ the physical boundary of
the mesh without reflection was used for most simulations. This is useful in modelling
infinite and semi-infinite spaces (e.g. the earth and the ocean). The transmitting boundary
condition is only active for flow out of a mesh and can be calculated as follows:
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for º
n
'0

for º
n
(0

(18)

where º
n
is normal velocity at the boundary and is positive for outward flow, I is material

impedance (oc); º
3%&

and P
3%&

are reference velocity and reference pressure, respectively.
However this transmitting boundary condition is still not exact, and is the subject of
continuing research (Weingarten et al. 1992).

The set of governing equations is solved using wave-codes, AUTODYN, of an explicit
and finite-difference algorithm. Wave-codes are computer programs that numerically simu-
late highly dynamic events, particularly those that include shocks (Anderson 1987). Gener-
ally, an Eulerian mesh was generated for water, and a Lagrangian one was used for the
projectile. This mesh generation technique is useful for solid and fluid interaction problems.
In this study, two-dimensional axisymmetric calculations were performed for normal
impacts and three-dimensional calculations for the oblique and multiple impacts.

4. RESULTS

In this section we present results obtained by using the model previously discussed for
predicting the pressure waveform radiated by ballistic sources. The analytical predictions
are also compared with numerical simulations. The results are grouped into three catego-
ries: (i) normal penetration, (ii) oblique penetration, and (iii) multiple penetrations.

4.1. NORMAL PENETRATION

4.1.1. Subsonic

Consider a spherical projectile of 1 cm diameter (used in most of the calculations). The
impact velocity is 1)2 km/s (M

l
"0)8), where M

l
is the impact Mach number. By integrating



Figure 5. Comparison of velocity decay. The results are obtained by conducting a numerical simulation (A) and
by integrating a momentum equation, equation 5, with a variable drag oefficient (B): 1 cm sphere, »

i
"1)2 km/s.

( — ) ) — ) A; (—d—) B.
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equation (1) with a velocity-dependent drag coefficient, we can obtain the velocity decay
history of the sphere. As shown in Figure 5, this approach gives excellent agreement with
the numerical simulations. Notice that the sphere has lost 50% of its initial kinetic enery
when the penetration velocity drops by 25%, which occurs within 55 ls after an impact.

Figure 6 displays a plot of a typical pressure waveform radiated by a subsonic BS. The
signature is calculated at z"4 cm, w"3 cm with an impact velocity of 1)2 km/s from the
numerical simulation and analytical method. The signature shows an initial peak corres-
ponding to the impact shock and decays as an exponential function. The analytical and
numerical predictions are in excellent agreement for the amplitude of the ballistic pressure,
its pulse duration and the wave arrival time. For the case of subsonic penetration, the
pressure signature at the observer is always seen to begin at the retarded time, r

o
/c, since the

impact shock propagates with the sound of speed in water as a hemispherical shape from
the impact point. It is of interest to note that several secondary pulses are observed from the
numerical simulations. A possible explanation for the existence of these pulses is the
pressure wave from the cavity wall, which is not included in the analytical model. In most
numerical simulations, the transmitting boundary is specified 25 and 50 sphere diameters in
the radial and penetration directions, respectively. Thus, the possible contamination of the
solution due to reflections was eliminated.

Figure 7 shows the evolution of the predicted pressure waveform received at w"3 cm
along the penetration depth. The signatures are estimated at the depths of 2 cm, 4 cm, and
8 cm. The increase in the pulse duration with depth is also observed in both the numerical
and analytical solutions. The results have the same feature, namely that the amplitude of the
peak ballistic pressure pulse first increases near the free surface and then decreases with
increased depth. This can be explained by the effect of the pressure-release boundary



Figure 6. Typical pressure signature generated by a subsonic projectile, estimated at z"4 cm, w"3 cm;
normal penetration, 1 cm sphere, »

i
"1)2 km/s. ( — ) ) — ) A; (—d—) B.
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between air and water. From the results, it can be concluded that a moving point source
approximation is valid for the case of subsonic penetration.

In the analytical model, a linearized form of the equations was used. However, it is useful
to see how far pulses must propagate for nonlinear effects to become noticeable. Consider
a spherical source with an initial radius r

e
and exponentially decaying pressure wave:

P
e
exp(!t/C ), where P

e
is the pressure at r

e
and C is the pulse duration. The pressure wave

in the medium is then given by

P
s

P
e

"f (r)
r
e
r

(19)

where f (r) is the finite amplitude loss effect, which is unity in the linear theory. From the
weak shock theory given by Rogers (1977), this function is

f (r)"
2

1#J1#2p
and p"

b
n
P
e
r
e

o
w
c3C

ln A
r

r
e
B (20a, b)

where b
n

is the coefficient of nonlinearity, taken as 3)5 for water. Now, from the pressure
wave estimated at z"6 cm in Figure 7(a), r

e
"0)04 m, P

e
"55 MPa and C"0)05 ms. For

f (r)"0)9, we have p"0)25 and r"193r
e
. So, linear theory should indeed yield good

results (Hamilton 1995).
The numerical simulations were conducted on a 486 IBM PC for two-dimensional

calculations and 586 IBM PC for three-dimensional calculations. A numerical simulation
typically takes 40 h of computational time for each case, while in the analytical predictions
several pressure waveforms can be constructed in two minutes on an IBM RS/600 machine.



Figure 7. Evolution of the pressure signatures obtained from (a) analytical method, (b) numerical simulation.
The signatures are estimated along the depth of z"2 cm (A), z"4 cm (B), z"6 cm (C), and z"8 cm (D) at radial
distance of 3 cm. The peak ballistic pressure initially increases with depth and then decreases with increased depth

due to the pressure-release boundary condition.
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The efficiency of the analytical methods compared to the numerical simulations is over-
whelming.

4.1.2. Supersonic

Figure 8 shows the pressure waveform generated by a sphere penetrating water at an
arbitrary supersonic impact velocity of 2)07 km/s (M

l
"1)4). The waveforms are predicted



Figure 8. Typical pressure signature generated by a supersonic projectile, estimated at z"5 cm, w"2 cm;
normal penetration, 1 cm sphere, »

i
"2)07 km/s; (——) analytical; (— — — ——) numerical.
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at z"5 cm, w"2 cm from the numerical and analytical solutions. The results show overall
agreement; however, the agreement for the pulse duration is not as close, with the numerical
pulse duration being a little larger than the analytical one. A possible explanation of this
discrepancy is a time compression of the signal received at the observer, i.e. a decrease in
pulse duration, even though the diffraction effects are included in the analytical model. To
a first approximation, the pulse duration from the numerical result is predicted to be 7 ls.

Then the wavelength which can be obtained by multiplying the pulse duration by the
sound speed of water is 1)03 cm. This value is close to the diameter of the sphere, which
indicates the occurrence of significant diffraction effects at this location. The angle (h

ti
),

measured from the penetration axis, within which the time inversion exists can be deter-
mined by setting (1!M

i
cos h

ti
) equal to zero, so that at M

l
"1)4, h

ti
equals 44)4°. Thus, if

an observer is located within this angle in the fluid, time inversion occurs. The initial angle,
h
o
, is 21)8°, which indicates that there is a time inversion. It should be noted that this

waveform is much different from the subsonic one, with a rarefaction wave following
a compression wave. This signature is a typical near-field waveform generated by a super-
sonic BS. From the signature, we see that the rarefaction wave gives a negative pressure of
several hundreds of atmospheres. Thus, a matter to be addressed is the tensile behaviour of
water. As discussed by Temperley & Trevena (1979, 1987), even though the amplitude of the
rarefaction wave is hundreds of atmospheres, if the pulse has a duration of only a few
microseconds then the water may stand the rarefaction wave without cavitation.

A plot of the peak ballistic pressure versus impact velocity is shown in Figure 9. The
predictions were obtained by computing for several values of sphere diameters D

p
the

pressure signatures at the observer using the analysis described in Section 2 of this paper. It
is found that the peak pressure varies approximately as the 2)9 power of the impact velocity



Figure 9. Peak ballistic pressure versus impact velocity from normal penetration, estimated at z"5 cm,
w"5 cm. The peak pressure varies as the 2)9 power of the impact velocity from the analytical results, 2)4 from the
numerical results. In the incompressible theory, the pressure is proportional to the square of the impact velocity,
however, due to the unsteady potential term and compressible effect at high velocity; the pressure is found to vary
with a slightly larger power of the impact velocity. Diameter D

p
: analytical ( — — — ) 1 cm, ( — ) 2 cm; numerical

(— m—) 1 cm, (—d—) 2 cm.

BALLISTIC WAVES IN HIGH-SPEED WATER ENTRY 833
from the analytical results and 2)4 from the numerical results, while McMillen (1946)
measured 2)17 from his experiments. A rough estimate can be made to predict the peak
pressure versus impact velocity by using the unsteady Bernoulli equation and Tait’s
equation of state for water. The maximum pressure is given by

P
s
!P

o
"

o
=

c2
=

n CG1!
n!1

c2
=
Au

t
#

D+uD2
2 BH

n@(n~1)
!1D (21)

where n"7)15. At the instant of impact, 1
2
D+/D2"!1

2
»2

i
and u

t
"!u

i
. Thus we can

write equation (21) as
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For the blunt body impact, u
t
"»2

i
f (geometry)+»2

i
constant, and equation (22)

becomes
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For high impact velocity, P
s
/o

=
c2
=
+M2n@(n~1)

i
. If n equals 7)15,

P
s
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=
»2>33

i
(24)



834 M. LEE E¹ A¸.
From equation (24), it can be concluded that, due to the unsteady pressure and compressible
effect, the peak ballistic pressure is found to behaviour 2)33 power of the impact velocity at
high impact Mach number, while in the incompressible theory the pressure varies as the
square of the impact velocity.

4.2. OBLIQUE PENETRATION

In this section we analyse the pressure waveforms radiatede by a projectile during oblique
penetration. The waveform can be constructed in a three-step procedure as follows. Firstly,
the observation location, impact point and the direction of penetration are specified in
(x, y, z) coordinates. These coordinates are transformed in (z, w) coordinates, and dynamic
and unsteady pressures are estimated in these coordinates. The dynamic pressures are again
transformed into (x, y, z) coordinates. The second step is to obtain the vertical pressure by
adding the dynamic and unsteady pressures in the (x, y, z) coordinates. The coordinate
transformation technique was discussed by Lundstrom (1971). The final step in the analysis
is to construct the continuous pressure waveform by performing the convolution of the
vertical and horizontal components.

4.2.1. Subsonic

Consider a spherical projectile with an impact velocity of 1)2 km/s. The impact angle is 30°,
measured from the vertical. Figure 10 shows the pressure waveforms estimated at z"3 cm,
x"4 cm, z"3 cm, x"!4 cm, and z"4 cm, x"4 cm. Although the waveform esti-
mated at z"3 cm, x"4 cm and z"3 cm, x"!4 cm is similar, the amplitude of the peak
ballistic pressure estimated at the location in which the source is moving is greater than that
estimated at the other location. This is attributed to the Doppler effect, since the angle
h between the direction of motion of the source and the direction of the observation point is
an important factor in determining the amplitude of the signal. The signature shown in
Figure 10(c) is predicted at z"4 cm, x"4 cm, which is much closer to the penetration axis.
This waveform, with two ballistic pulses, is different from the previous ones shown in
Figure 10(a, b). The first peak is due to the spherical impact pulse which decays at a rate of
between 1/r and 1/r2, while the second peak comes from the ballistic pulse. Although the
source strength decreases as it moves in the fluid due to the kinetic energy loss, if the
observation location is close to the penetration axis but also sufficiently deep so that the
spherical impact shock has attenuated enough, the second ballistic pulse can be observed.
The two pulses are observed in both the numerical and analytical solutions. The signature
shown in Figure 10(c) is a typical waveform at a deep location close to the penetration axis,
which was also measured in the experiments of Leslie (1964).

Figure 11 shows a plot of the peak ballistic pressure versus penetration angle. The im-
pact velocity of the sphere is 1)0 km/s. The results were obtained by computing the
pressure signatures at several locations in the medium. For target points in the same
direction as the motion of the source (#x plane), the peak pulse increases with h. That is,
the smaller the angle, h, the larger the Doppler factor. The inverse is true for the direction
opposite to the motion of the source (!x plane). This is the Doppler shift which occurs for
a moving source. In Figure 11, it can be observed that the amplitude of the ballistic wave
increases by a factor of two for a 35° oblique penetration compared with the normal
penetration.



Figure 10. Pressure signatures generated by a subsonic ballistic source, estimated at (a) z"3 cm, x"4 cm,
(b) z"3 cm, x"!4 cm, (c) z"4 cm, x"4 cm; (——) analytical; (— —— ——) numerical. The peak pressures
estimated at (a) and (b) locations are different due to the Doppler effect. In (c), two pulses are observed because the
observer is located close to the penetration axis. The first peak is due to the spherical impact pulse, while the second

peak comes from the ballistic pulsse; oblique penetration (30°), 1 cm sphere, »
i
"1)2 km/s.
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4.2.2. Supersonic

Figure 12 shows the pressure waveforms predicted at z"2 cm, x"4 cm, z"2 cm,
x"!4 cm for a supersonic impact (M

i
"1)4). The impact angle is 30°. The solid line

represents the prediction obtained from the analytical theory, and the dashed line repres-
ents the prediction obtained from the numerical simulations. At z"2 cm, x"4 cm the
angle between the direction of the observer and the penetration axis equals 34)4°, which



Figure 10. (Continued).

Figure 11. Normalized peak ballistic pressure versus penetration angle (measured from the vertical). For target
points in the same direction as the motion of the source (#x plane), the peak pulse increases with h. That is, the
smaller h is, the larger the Doppler factor is. The inverse is true for the direction opposite to the motion of the
source (!x plane). The peak pressure increases by a factor of two at 35° oblique penetration compared with that at
normal penetration; 1 cm sphere, »

i
"1)0 km/s. ( —d—) z"3 cm, x"5 cm; (—n—) z"3 cm, x"7 cm;

( — —K — — ) z"3 cm, x"!5 cm; ( — — .—— ) z"3 cm, x"!7 cm.
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Figure 12. Pressure signatures generated by a supersonic ballistic source, estimated at (a) z"2 cm, x"4 cm,
(b) z"2 cm, x"!4 cm; (—— ) analytical; ( — — — — —) numerical. The signature in (b) looks like the waveform
radiated by a subsonic BS. This is because at this location h

o
equals 93)4°, so the observer is located in the rear

hemisphere; oblique penetration (30°), 1 cm sphere, »
i
"2)07 km/s.
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indicates the existence of a time inversion. This is because the observer is located within the
time inversion angle (44)4°). The typical nearfield pressure waveform is predicted with
a small discrepancy on the pulse duration. Now consider the amplitude of the peak ballistic
pulses at the two locations. Due to the Doppler factor associated with the moving direction
of the source, the amplitude of the peak pressure is much different, although r

o
at both

locations is the same. Also of interest is that the waveform at z"2 cm, x"!4 cm looks
like the waveform radiated by a subsonic BS. This is due to the fact that, at this location,
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h equals 93)4°, and thus the observer is located in the rear hemisphere. Again, these
results confirm the validity of the analytical model for the case of the supersonic oblique
penetration.

4.3. MULTIPLE PENETRATION

In this section, the pressure waveforms radiated by two projectiles during subsonic normal
and supersonic oblique penetration are investigated. The pressure waveform is constructed
by the superposition technique. The geometry of the oblique multiple penetration is
displayed in Figure 13.

4.3.1. Subsonic

Consider two spheres at normal impact with an impact velocity of 1)2 km/s. The distance
(¸) between them is 8 cm. Figure 14 shows the pressure waveforms estimated at z"3 cm,
x"2, 3, and 4 cm. In Figure 14(a), the waveform calculated at z"3 cm, x"2 cm shows
that the first ballistic pulse radiated by a left BS is followed by a second ballistic pulse
coming from the right BS. The amplitude of the first pulse is significantly greater than the
second pulse due to the geometry of the sources and observer. In Figure 14(b), the waveform
obtained from the numerical simulation is nearly one pulse, while the waveform from the
analytical solution is composed of two pulses radiated by two sources. This can be
attributed to the shock smearing effect which is not included in the analytical model: due to
the slow shock rise time, the second pulse is smeared with the first pulse. However, good
agreement in the total pulse duration is obtained.

4.3.2. Supersonic

The predictions are made for »
i
"2)07 km/s, ¸"10 cm, and an impact angle of 30° from

vertical. Figure 15 shows the pressure waveform predicted at z"2 cm, x"4 cm displayed
as A, being closer to the left source, and at z"2 cm, x"6 cm as B in Figure 13. In both the
analytical and numerical simulation results, two pressure pulses are predicted at A, as
discussed in the subsonic calculations. Compared to the subsonic waveform, the first pulse
should have a rarefaction wave following a compression wave. However, the second pulse
Figure 13. Geometry of oblique multiple penetrations of finite spheres.



Figure 14. Pressure signatures generated by subsonic ballistic sources, estimated at (a) z"3 cm, x"2 cm,
(b) z"3 cm, x"3 cm, (c) z"3 cm, x"4 cm; ( ——) analytical; ( — — —— — ) numerical. In (b), one pulse is
observed from the numerical simulation. This can be attributed to the shock smearing effect, which is not included
in the analytical model. However, the agreement with the analytical results for the total pulse duration is favourable;

normal multiple penetration, 1 cm sphere, »
i
"1)2 km/s, the distance between the impact points is 8 cm.
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emitted by the right source is received at this location a small time later and added to the
first pulse, which eliminates the rarefaction wave from the first pulse. Two pulses are also
observed at B. However, the first pressure pulse is a small compression wave radiated by the
right source since this point is seen to be located in the backward hemisphere of the right
source. On the other hand, the second pulse emitted by the left source is a large compression
wave which must be followed by a rarefaction wave. Because of the addition of these pulses,
as shown in the figure, the rarefaction wave disappears from the second pulse. The



Figure 14. (Continued).
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characteristics of the pressure waveform at C,D in Figure 13 is expected to be nearly the
same as the results described in the previous section. An interesting point to be considered is
that the cavity created by a right source can be another free surface which gives rise to
reflection waves. However, if the depth of C is larger than the cavity, left pressure waves
could be received at C. This is also true for D.

5. SUMMARY AND CONCLUSIONS

The ballistic waves generated by a projectile penetrating into water at subsonic and/or
supersonic velocities with respect to water has been studied both analytically and numer-
ically. Although we have restricted our analysis to the case of high-speed impact of a sphere,
the model presented here can be extended for any body shape. This study was based on the
work of Lee (1995), and the following conclusions can be drawn.

The analytical model is based on the linear potential wave equation describing the
generation of ballistic waves by a moving source for an inviscid and irrotational medium.
The projectile is described as a moving point source whose strength is determined by the
kinetic energy loss of the projectile. Using the energy balance principle, this energy goes into
the kinetic and potential energy stored in the fluid. A time-domain analysis is developed in
order to predict the ballistic waves radiated by a projectile. The impact Mach number of the
projectile ranged from 0)4 to 1)4, with special interest in the case of transonic velocities.

The moving point source approximation has been found to be good for the sources
moving at subsonic velocity. For the case of supersonic source velocities, the wavelength
of the ballistic wave is comparable to the size of a projectile, in which case the approxima-
tion of small diffraction effects breaks down. For the purpose of having a model valid for
any source velocity, the pressure radiated by a supersonic source is expressed as a convolu-
tion type summation between the horizontal component and vertical component. The
vertical component represents the response of a moving point source, and the horizontal



Figure 15. Pressure signatures generated by a supersonic ballistic source, estimated at (a) z"2 cm, x"4 cm,
(b) z"2 cm, x"6 cm; ( ——) analytical; ( — — — — —) numerical. The rarefaction waves have disappeared due to
the addition of the other wave; oblique (30°) multiple penetration, 1 cm sphere, »

i
"2)07 km/s, the distance

between the impact points is 10 cm.
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component represents the response of the projected area of the source. Also of importance
for the case of a supersonic source is the time inversion phenomenon which occurs when
a source is moving faster than the disturbances it generates. It has been shown that the time
inversion quickly disappears during the penetration in water due to the decay of the
projectile velocity. In order to account for the time inversion effect, the potential function
has been partitioned into two similar integrals: one for the source during the time inversion
period, the other for the source with no time inversion.
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The results from the analysis of the ballistic waves reported in this study show that, for
the subsonic case, the analytical predictions are in good agreement with the numerical
simulations, especially for the amplitude of the peak pressure, the pulse duration and the
projectile dynamics. For the supersonic case, the pulse duration from the analytical
prediction is a little shorter than that from the numerical results, even though diffraction
effects are considered in the model. In general, the analytically predicted waveform is in
reasonable agreement with the numerically simulated waveform. By taking the time inver-
sion into account, the analytical model is able to predict the rarefaction wave following the
compression wave. Limitations of the numerical modelling were identified, such as relative-
ly poor shock front resolution because of the dispersion effects. For the far-field solution,
a numerical simulation that solves nonlinear fluid flow is not reliable because of the large
three-dimensional fluid medium containing the projectile.
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APPENDIX: NOTATION

A and B constants, defined by equation (9)
A

o
projected area of the projectile

a cavity radius
C

d
drag coefficient

c speed of sound in the fluid
D

p
projectile diameter

E
p

kinetic energy of the projectile
e specific total energy
f
i

external body forces per unit mass
f (r) finite amplitude loss effect
I material impedance, oc
M Mach number
M

c
convected Mach number

M
i

Mach number at impact
m radius of the cross section of the projectile
m

p
projectile mass

N constant, ln(X/a)
n coefficient in Tait’s equation of state for water
P(t ) total pressure
P
e

magnitude of peak pressure at r
e

P
s

magnitude of peak pressure at r
P
c

cavity pressure



844 M. LEE E¹ A¸.
P
11

(t) horizontal pressure component
P
o

ambient pressure
P
V
(t) vertical pressure component

R
b

distance between the projectile and observer
r distance between the line source and observer location
r
e

initial radius of a spherical source
r
o

distance between the impact and observer locations
r
p

projectile radius
t time
t
b
(z) arrival time of projectile at point z

t
p
(z) time of arrival to the observer of a wavelet emitted at a distance z

º magnitude of fluid particle velocity
»
i

impact velocity
»
p

moving velocity
Z

a
penetration distance for the period of time invesion

Z
b

total penetration distance
z penetration axis
w radial distance
b velocity decay constant
b
n

coefficient of nonlinearity and 3)5 for water
C pulse duration
f source strength at m
h
o

angle between the direction from impact to observer and moving direction
m penetration index
o
w

density of water
p
ij

stress tensor
q retarded time, t!r/c
q
i

period of time inversion
u velocity potential
X distance of radial velocity field
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